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ABSTRACT

Aims. We studied the manifestation of decayless oscillations in 3D simulations of coronal loops, driven by random motions.
Methods. Using the PLUTO code, we ran magnetohydrodynamic (MHD) simulations of a straight gravitationally stratified flux tube,
with its footpoints embedded in chromospheric plasma. We consider transverse waves drivers with a horizontally polarised red noise
power-law spectrum.
Results. Our broadband drivers lead to the excitation of standing waves with frequencies equal to the fundamental standing kink mode
and its harmonics. These standing kink oscillations have non-decaying amplitudes, and spectra that depend on the characteristics of
the loops, with the latter amplifying the resonant frequencies from the drivers. We thus report for the first time in 3D simulations the
manifestation of decayless oscillations from broadband drivers. The spatial and temporal evolution of our oscillation spectra reveals
the manifestation of a half harmonic, which exhibits half the frequency of the identified fundamental mode with a similar spatial
profile. Our results suggest that this mode is related to the presence of the transition region in our model and could be interpreted as
being the equivalent to the fundamental mode of standing sound waves driven on pipes closed at one end.
Conclusions. The potential existence of this half harmonic has important implications for coronal seismology, since misinterpreting it
for the fundamental mode of the system can lead to false estimations of the average kink speed profile along oscillating loops. Finally,
its detection could potentially give us a tool for distinguishing between different excitation and driving mechanisms of decayless
oscillations in observations.
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1. Introduction

The term decayless transverse (or kink) oscillations has been
used over the past decade to describe a category of generally
small-amplitude transverse oscillations in coronal loop observa-
tions in the extreme ultraviolet (EUV). The name is inspired by
the near constant value of their amplitude, persisting over a large
number of oscillation periods (Nisticò et al. 2013). This comes in
stark contrast to the other known regime of large amplitude fast
decaying transverse loop oscillations (Aschwanden et al. 1999;
Nakariakov et al. 1999). Both decaying and decayless transverse
oscillations are treated as standing kink oscillations in cylindri-
cal loops (e.g. Edwin & Roberts 1983; Van Doorsselaere et al.
2008; Anfinogentov et al. 2015), and alongside propagating kink
waves they are some of the most studied and ubiquitous phenom-
ena in the solar corona (see Nakariakov et al. 2021, for a review).
Ever since their discovery in coronal loops (Wang et al. 2012;
Tian et al. 2012), the ubiquitous nature of decayless oscillations
has been confirmed by a large number of observational studies in
coronal loops (e.g. Anfinogentov et al. 2013, 2015; Zhong et al.
2022a,b), in short coronal loops with length of a tens of Mm (e.g
Petrova et al. 2023; Shrivastav et al. 2023), and in coronal bright
points (CBPs) (e.g. Gao et al. 2022).

Unlike their decaying counterparts, which are excited by
nearby transients (see Nechaeva et al. 2019), the constant ampli-
tude of these decayless oscillations suggests a continuous sup-
ply of energy that will counteract the damping from effects like

resonant absorption (e.g. Goossens et al. 2002), phase mixing
(e.g. Heyvaerts & Priest 1983), and the Kelvin–Helmholtz insta-
bility (KHI; Van Doorsselaere et al. 2021b,a). This makes non-
damping kink oscillations a potential heating mechanism for the
solar atmosphere (e.g. Lim et al. 2023; see also Van Doorsse-
laere et al. 2020 for a review). In addition, decayless oscillations
can be used in coronal seismology, as in Anfinogentov & Nakari-
akov (2019) where they were used to determine the distribution
of kink and Alfvén speeds in active regions.

However, the excitation mechanism of decayless oscillations
is still under debate. In Antolin et al. (2016), they are hypothe-
sised to be the result of (line of sight) LOS effects due to KHI.
Nisticò et al. (2013) proposed instead a harmonic driver in reso-
nance with the loop, an idea used extensively in simulations (e.g.
Karampelas et al. 2017; Guo et al. 2019). However, harmonic
drivers lead to equal manifestation of horizontally and verti-
cally polarised oscillations, while observations favour horizon-
tal polarisations (Anfinogentov et al. 2015). Excitation via su-
pergranulation flows as a self-oscillation was proposed (Nakari-
akov et al. 2016, 2022), and was shown numerically (Karam-
pelas & Van Doorsselaere 2020) to create horizontally linearly
polarised oscillations. However, this can not explain decayless
oscillations of loops rooted in sunspots, where supergranulation
flows are absent (Mandal et al. 2022). Excitation by vortex shed-
ding (Nakariakov et al. 2009) can also generate non-damping
oscillations (Karampelas & Van Doorsselaere 2021) and could
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Fig. 1. Temperature, density, and Bz magnetic field along z inside (solid
line) and outside (dashed line) of the flux tube, at the end of the 2.5D
MHD relaxation.

explain observations of flare-induced decayless oscillations in
Mandal et al. (2022). Afanasyev et al. (2020) explored the spec-
trum of excited oscillations from a red noise driver in a 1D study,
providing the first proof of concept for broadband drivers excit-
ing multiple harmonics in decayless oscillations (see also Rud-
erman & Petrukhin 2021; Ruderman et al. 2021). The contribu-
tion of footpoint-driven transverse waves with a multi-frequency
spectrum in the energy evolution and heating of 3D coronal
loops has also been studied in recent years (e.g. Pagano & De
Moortel 2019; Pagano et al. 2020; Howson & De Moortel 2023).
However, no numerical study of 3D coronal loops perturbed by
broadband drivers has reported on the excitation and evolution,
spatial and temporal, of standing waves matching the observed
decayless oscillations, in the presence or absence of a transition
region and a lower chromosphere.

In this letter we study the spectra of decayless oscillations in
a 3D gravitationally stratified loop, generated by a driver with
a power-law spectrum. In Section 2 we describe our initial and
boundary conditions and the numerical scheme used throughout
our simulations. Our findings are presented in detail in Section
3. Finally, a thorough discussion of our results and their impli-
cations for the topic focused on here takes place in Section 4.

2. Numerical set-up

Initial conditions: We modelled a coronal loop with a chromo-
spheric part and a transition region, following Pelouze et al.
(2023) and Guo et al. (2023). We calculated the hydrostatic equi-
librium in a 2.5D slice with r ∈ [0, 8] Mm and z ∈ [0, 200] Mm,
a uniform grid (200 × 2048 points), and sinusoidal gravity (gz =
274 cos(π z/200) m s−2) along the vertical magnetic field lines
B = Bzk̂ = 30 G, using the following profiles:

T (r, z) =
{

TCor, for 5 Mm ≤ z ≤ 195 Mm,
TCh, elsewhere, (1)

TCor = TCh + (TC(r) − TCh)(1 − [(200 − z)/195]2)0.3, (2)
TC(r) = TC,e + (TC,i − TC,e) ζ(r), (3)

ρCh(r) = ρCh,e + (ρCh,i − ρCh,e) ζ(r), (4)
ζ(r) = 0.5[1 − tanh (([r/R] − 1) 20)]. (5)

The subscripts Ch, Cor, and C refer to the chromospheric (z = 0
and z = 200 Mm), coronal, and apex (z = 100 Mm) values, re-
spectively, inside (i) and outside (e) of the loop. The function
ζ(r) gives us the radial loop profile, with a cross-section radius

of R = 1 Mm. Finally, we have TCh = 0.02 MK, TC,i = 1 MK,
TC,e = 1.5 MK, ρCh,i = 3.51 × 10−8 kg m−3, and ρCh,e =
1.17 × 10−8 kg m−3. We let the system evolve for 3890 s, reduc-
ing each velocity component per iteration (vi = vi/1.0001) for
2334 s, reaching a semi-equilibrium state with maximum resid-
ual velocity values of ∼ 4 km s−1 along the z direction and
∼ 0.05 km s−1 along the x and y directions. The initial conditions
after the 2.5D MHD relaxation are shown in Figure 1. We then
interpolated the results on a 3D Cartesian grid with dimensions
x ∈ [−6, 6] Mm, y ∈ [0, 4] Mm, and z ∈ [0, 200] Mm. We consid-
ered δx = δy = 40 km everywhere, δz = 98 km for z ≤ 10 Mm
and z ≥ 190 Mm, δz = 800 km for z ∈ [24, 176] Mm, and a
stretched grid for z ∈ (10, 24) Mm and z ∈ (176, 190) Mm.

Boundary conditions: In the 2.5D set-up, we consider ax-
isymmetry at r = 0 and open boundaries at r = 8 Mm. At the
z = 0 and z = 200 Mm, we take zero-gradient conditions for
the magnetic field, antisymmetry for the velocity, symmetry for
the density, and constant temperature TCh. For the 3D set-up, we
have open boundaries at x = −6 Mm, x = 6 Mm, and y = 4 Mm
and a reflective boundary at y = 0, simulating half the loop.
At z = 0 and z = 200 Mm, the boundaries are the same as in
the 2.5D case, but with added symmetry for the pressure. At
t0 = 202 s, we apply a velocity driver ({vx, vy} = {V(t) ζ(r, t), 0})
at z = 0, where we take R = Rd = 2.5 Mm in ζ(r, t), to ensure
that the loop always remains inside the area of the driver. For
the velocity signal V(t), we take a red noise power-law spectrum
(S ∝ f −1.66, with f being the frequency), using the colorednoise
2.1.0 Python package. Our driver is shown in Figure 2; the or-
ange line depicts its background trend, calculated with a low pass
filter. Our driver also tracks the location of the footpoint (r(t)) by
numerically integrating the velocity signal over time.

Numerical scheme: We solve the full magnetohydrodynamic
(MHD) equations for a hydrogen plasma with the PLUTO code
(Mignone et al. 2007), using the parabolic method in 2.5D and
the MP5 method in 3D, the Roe solver, the third-order Runge–
Kutta method, and the extended GLM formulation. The effective
numerical diffusivity (η) is estimated at ∼ 10−5 − 10−4 in units
of the inverse magnetic Reynolds number. In the 2.5D set-up,
we also add explicit magnetic diffusivity η = 10−4. We include
thermal conduction (κ∥ = 9 × 10−12T 5/2 in J s−1 K−1 m−1) and
saturation effects for large temperature gradients. For T ≤ Tcut =
0.25 MK, we apply the correction by Linker et al. (2001), Li-
onello et al. (2009), and Mikić et al. (2013), to treat the transition
region with a coarser grid.

3. Results

We limit our analysis to the coronal part of the loop, while using
the lower chromospheric part as a mass reservoir. As is shown
below, our driver displaces the loop while also exciting kink os-
cillations. To study these oscillations, we track the horizontal
position of the loop centre of mass for each z plane, by calcu-
lating the average displacement, using as weight the quantity
(ρ(z) − ρe(z))2, where ρe(z) is the density outside the loop. The
averaging takes place across the entire domain at each z-plane.
This gives us the transverse displacement of the loop along x
over time, for each height.

The top left panel of Figure 3 shows the displacement of
the coronal part of the loop for waves excited by the red noise
driver. We considered a number of ‘slits’ (21 for z ∈ [25, 175])
and projected the signal along z. For better visualisation we also
magnified the signal of each slit by simply multiplying by a fac-
tor of 20. This multiplication is not employed anywhere else in
our analysis, but is only used to visually show the loop motion.
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Fig. 2. Velocity signal (left panel) and spectrum (right panel) for our red noise driver. The orange line shows its velocity trend.

The right panel shows the normalised Fourier power spectral
density (PSD), along the loop, with resolution along z corre-
sponding to the number of slits used. The low frequency com-
ponents of the red noise driver lead to large a displacement of
the driven footpoint, diminishing as we travel along z towards
the anchored footpoint. This aperiodic displacement also man-
ifests in the spectra shown in the top right panel of Figure 3,
for frequencies close to 0. We also see the spatial profile of the
corresponding frequencies, being stronger closer to the driven
footpoint.

In order to focus on the periodicities of the observed oscil-
lating patterns in the top left panel of Figure 3, we removed the
background trend of the aperiodic displacement from our signal
by applying a high pass Gaussian filter, similarly to what could
have been applied on a signal derived from EUV observations of
decayless oscillations. This process is also the same as that used
to calculate the background trend of our driver, shown in Fig-
ure 2. The now detrended displacement and respective Fourier
spectra are shown in the middle panels of Figure 3. In the mid-
dle right panel, we now clearly see two bands of frequencies,
one centred at ∼ 2.5 − 3 mHz and one at ∼ 4 − 5 mHz. The na-
ture of these bands, which are also visible in the spectrum of the
full signal shown in the top right panel of the same figure, can
be understood by identifying the fundamental kink mode of our
loop.

The top left panels of Figure 4 show the non-magnified de-
trended displacement signal at the apex and its corresponding
wavelet spectrum over time, for our loop. We see that the de-
trended signal depicts a transverse oscillation with amplitudes
of the order of ∼ 0.2 Mm. This amplitude shows no significant
decay over time, and is typical of the values found in decayless
oscillations of coronal loops (e.g. Anfinogentov et al. 2015). The
two frequency bands at ∼ 2.5− 3 mHz and ∼ 4− 5 mHz can also
be seen here, persisting over time, with the former exhibiting an
overall stronger signal. As a control, we also performed a simula-
tion of the same loop oscillating with a non-driven decaying fun-
damental standing kink mode, excited by an initial velocity field.
The signal and wavelet spectrum is shown in the top right panels
of Figure 4, from which we confirm that the ∼ 4 − 5 mHz fre-
quency band corresponds to the fundamental standing kink mode
for our oscillating loop. Looking again at the middle right panel
of Figure 3, we see that the spatial profile of this frequency band
indeed matches the expected one for the fundamental standing
kink mode. Having oscillations with the period of the funda-
mental standing kink mode and a non-decaying amplitude, we

are led to describe these excited standing waves as decayless os-
cillations.

Alongside the fundamental mode, in the middle right panel
of Figure 3 we can also see patterns of additional higher har-
monics: the second (∼ 7.5 − 8 mHz), third (∼ 12 mHz), fourth
(∼ 16 mHz), and even fifth (∼ 20 mHz) harmonic. These were
made clear after the removal of the contribution from the lower
frequencies. However, they can also be detected in the PSD con-
tours in the top right panel of Figure 3, although their signal is
much weaker than that of the low frequency loop displacement
of the original time series.

The ∼ 2.5 − 3 mHz frequency band, which we descriptively
refer to as the ‘half harmonic’, has frequencies around half that
of the identified fundamental mode. This frequency band is also
present within the 99% significance level contours in the wavelet
spectra of the decaying fundamental kink mode (see top right
panels of Figure 4). As can be seen by the wavelets, this mode is
only weakly excited by the initial velocity field. Finally, both the
half harmonic and the fundamental frequency bands have finite
widths in the PSD graph, due to the limited sample size of the
signal, as well as the development of instabilities and the restruc-
turing of the loop density.

To ensure that the identified frequency bands are the result
of the loop filtering and magnifying its natural frequencies, and
not exclusively the result of the power distribution of our driver,
we performed an additional set of simulations, one with the red
noise driver and one with an impulsive oscillation, for a differ-
ent loop, with initial coronal magnetic field of Bz = 20 G. This
loop has temperature and density profiles very similar to those
shown in Figure 1 for the loop with Bz = 30 G. The detrended
displacement and corresponding Fourier spectrum is shown in
the bottom panels of Figure 3. The bottom panels of Figure 4
again show the signal and wavelet spectrum at the apex for the
detrended displacement and for an impulsive decaying oscilla-
tion. By studying the Fourier and wavelet PSDs, we see that the
new fundamental mode (∼ 3 mHz) and its corresponding half
harmonic (∼ 1.5 mHz) and overtones (second at ∼ 6 mHz, third
at ∼ 9 mHz) are excited.

Finally, we performed a simulation of our original loop with
a coronal magnetic field of Bz = 30 G, where we simultaneously
employ two drivers: (a) the original one (see Figure 2) at z = 0
and (b) a new driver at z = 200 Mm. The second driver, shown
in the left panel of Figure 5, was created from a new red noise
spectrum, different from that of the original driver, with the ad-
ditional step of removing the low frequency background trend.
Driving the loop from both footpoints led again to the superposi-
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Fig. 3. Centre of mass x displacement and corresponding spectra for two different loops. Left panels: Magnified (×20) x displacement of the
loop centre of mass per height (projected on z) from slits placed along the coronal part of the loop. Right panels: Fourier power spectra of the
displacement taken from the slits on the left. The top and middle panels correspond to the original and detrended displacement signals for a loop
with a coronal magnetic field Bz ∼ 30 G. The bottom panels correspond to the detrended displacement signal for a loop with Bz ∼ 20 G.

tion of a decayless oscillation and a low frequency displacement.
Taking the PSD of the detrended displacement signal in the right
panel of Figure 5, we see its similarity to that in the middle right
panel of Figure 3. The main difference comes from the second
driver, which increases the power of the half harmonic near the
second footpoint.

4. Discussion and conclusions

In this study we report for the first time in 3D MHD simulations
the excitation of decayless kink oscillations driven by a foot-
point power-law driver, for a gravitationally stratified coronal
loop with footpoints embedded in chromospheric plasma. The
amplitudes of our oscillations are of the order of 0.2 Mm and do
not show any signs of decay for the duration of our simulations
(∼ 5 − 7 oscillation periods, depending on the characteristics of
each loop used). Figures 3 and 4 also show a modulation of the

oscillation amplitudes, similar to what was reported in Nakari-
akov et al. (2022) for a model of self-oscillations with additional
random-motion terms. However, further exploration of this ef-
fect with respect to past studies of self-oscillations is required,
which falls outside the scope of this present work. The low fre-
quency component in our driver does not suppress the decayless
oscillations when the fully compressible 3D MHD equations are
considered, but instead adds an overlaying displacement that ap-
pears aperiodic. Expanding upon this, driving a loop at any fre-
quency band would manifest in the oscillation spectrum, for ex-
ample in simulations of decayless oscillations of short coronal
loops driven by p-modes (Gao et al. 2023). Using a high pass
Gaussian filter to remove this aperiodic, very low frequency mo-
tion, we again end up with a signal of a decayless oscillation.

Using loops of different initial conditions, we see that the
same driver leads to the excitation of standing modes for the res-
onant frequencies corresponding to each loop. This further sup-
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Fig. 4. Displacement of the loop apex (z = 100 Mm) and respective wavelet spectra, for a loop with Bz ∼ 30 G (top panels) and Bz ∼ 20 G (bottom
panels). The signals on the left are the detrended displacement from the driven oscillations. The signals on the right correspond to the fundamental
standing kink mode, excited by an initial velocity field. The white contours show the 99% significance level.

Fig. 5. Signal of the second velocity driver at z = 200 Mm (left panel) and PSD of the respective centre of mass displacement (right panel) for a
loop with a coronal magnetic field Bz ∼ 30 G, driven from both footpoints. The original driver is also active at z = 0.

ports the findings of the 1D study in Afanasyev et al. (2020),
proving that coronal loops can filter the driving frequencies in
broadband drivers by responding to the resonant ones. We also
see our loops manifesting the fundamental standing kink mode
and its overtones and we identify modes as high as the fifth har-
monic. Such overtones, mainly the second and third harmonic,
have also been observed in kink oscillations of loops in EUV,
both for decayless (e.g. Duckenfield et al. 2018) and decaying
(e.g. Duckenfield et al. 2019) oscillations, with our model also
reproducing them for random motion footpoint driving in the
case of decayless oscillations.

In addition to the fundamental mode and its overtones, our
model also predicts the excitation of a half harmonic for each
loop, with wavelength λhalf = 4L, where L is the loop length.
This frequency band scales with the fundamental, with faint
traces of it detected in the spectra of decaying kink oscillations.
Its scaling with the fundamental mode is difficult to explain, as
it does not agree with the expected solutions of the wave equa-
tion in a stratified medium with a transition region present (see
Howson & Breu 2023, for the harmonics in a 1D model using
Alfvén waves). A possible interpretation can be given by con-
sidering the effects of the transition region, which is not a per-
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fectly reflective boundary (Pelouze et al. 2023). The wave re-
flections there will set up standing waves, establishing the fun-
damental standing kink modes and its overtones that we detect.
At the same time, the movement of the footpoints in the tran-
sition region will create a velocity antinode there. As the loops
oscillate, this will lead to a superposition of waves, each seeing
one ‘closed’ and one ‘open’ footpoint, leading to the manifesta-
tion of the half harmonic with a frequency that is half that of the
fundamental. The equivalent mechanical analogue is that of the
fundamental mode of standing sound waves in cylindrical pipes
closed at only one end (like pan flutes) having half the frequency
of the fundamental in open-ended (or closed-ended) pipes. The
lower velocities in the transition region for footpoints anchored
at the chromosphere, could explain why our simulations of de-
caying oscillations also show faint traces of this half harmonic.

The exact nature of this half harmonic needs to be further
explored in a dedicated study. However, this predicted half har-
monic can have profound effects in coronal seismology. The ra-
tio of the periods from multiple harmonics detected in standing
loop oscillations can be used to calculate the profile of the aver-
age kink speed (CK) along the loop (Jain & Hindman 2012). For
example, the models by Andries et al. (2005) and Safari et al.
(2007) attribute deviations from the expected values of these ra-
tios to density stratification, calculating the periods of the modi-
fied first, second, and third harmonics as

P1 = Pkink(1 + L/(3π2H))−1, (6)
P2 = Pkink(2 + 2L/(15π2H))−1, (7)
P3 = Pkink(3 + 3L/(35π2H))−1. (8)

Here Pkink = 2L/CK is the period of the fundamental standing
kink mode and H the density scale height. A half harmonic with
a similar spatial profile to the first harmonic, but with signifi-
cantly more power, as our Fourier analysis suggests, could be
misidentified as the P1 mode, leading to false estimations of
the density scale height for the model previously mentioned,
the magnetic field or the CK profile along the loop in general.
Misidentifying this half harmonic could also lead to errors in the
slopes of a factor of 2, when studying the correlation of the oscil-
lation period and the loop length (e.g. Anfinogentov et al. 2015;
Shrivastav et al. 2023). Therefore, this predicted half harmonic,
if observed, can be of great importance when using decayless
oscillations as tools for coronal seismology.

Finally, we note that such a half harmonic would be more
prominent if the loop is driven by displacing its footpoints with
such broadband drivers. Models of decayless oscillations that re-
quire both footpoints to be anchored or that they move primarily
with very small amplitudes at dissonant frequencies, will exhibit
fainter traces of this mode. It remains to be tested whether the de-
tection of the half harmonic, or lack thereof, could give us a tool
to distinguish between footpoint driving and alternative excita-
tion mechanisms for decayless oscillations in loops, such as driv-
ing by vortex shedding, or generating self-oscillations through
the loop interacting with supergranulation flows.
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